Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.263
Filtrar
1.
Comput Biol Med ; 174: 108457, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599071

RESUMO

Glioma is a common malignant brain tumor with great heterogeneity and huge difference in clinical outcomes. Although lymphotoxin (LT) beta receptor (LTBR) has been linked to immune system and response development for decades, the expression and function in glioma have not been investigated. To confirm the expression profile of LTBR, integrated RNA-seq data from glioma and normal brain tissues were analyzed. Functional enrichment analysis, TMEscore analysis, immune infiltration, the correlation of LTBR with immune checkpoints and ferroptosis, and scRNAseq data analysis in gliomas were in turn performed, which pointed out that LTBR was pertinent to immune functions of macrophages in gliomas. In addition, after being trained and validated in the tissue samples of the integrated dataset, an LTBR DNA methylation-based prediction model succeeded to distinguish gliomas from non-gliomas, as well as the grades of glioma. Moreover, by virtue of the candidate LTBR CpG sites, a prognostic risk-score model was finally constructed to guide the chemotherapy, radiotherapy, and immunotherapy for glioma patients. Taken together, LTBR is closely correlated with immune functions in gliomas, and LTBR DNA methylation could serve as a biomarker for diagnosis and prognosis of gliomas.

2.
J Sci Food Agric ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630097

RESUMO

BACKGROUND: The wild variety Fritillaria taipaiensis E. B (EB) is known for its superior therapeutic effects, but its limited production cannot meet the demands. As a result, the cultivated variety F. taipaiensis P. Y. Li (PY) has been widely grown. In this study, we conducted a comprehensive analysis comparing EB and PY in terms of external features, Sipeimine content, metabolome, and chloroplast genome to differentiate these two varieties. RESULTS: Our research revealed that the petals and pods of EB are green, while those of PY have purple markings. The bulbs of EB contain significantly higher levels of Sipeimine compared to PY. Metabolomic analysis identified 56 differentially expressed metabolites (DMs), with 23 upregulated and 33 downregulated in EB bulbs. Particularly, 3-Hydroxycinnamic acid and Secoxyloganin may serve as distinctive differential metabolites. These DMs were associated with 17 KEGG pathways, including Pyrimidine metabolism, Alanine, Aspartate and Glutamate, and Galactose metabolism. Differences in the length of the chloroplast genome were primarily observed in the LSC region, with the largest variation in the trnH-GUC~psbA region. The placement of the trnH gene and the rps gene in proximity to the LSC/IRb boundary differs between EB and PY. CONCLUSION: The results of this study provide valuable insights for the introduction and comprehensive development of wild F. taipaiensis from a scientific perspective. This article is protected by copyright. All rights reserved.

3.
Materials (Basel) ; 17(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612165

RESUMO

The potential of bisphenol A (BPA)-binding peptides fused to magnetic beads is demonstrated as novel adsorbents that are reusable and highly selective for BPA removal from aqueous environments, in which various interfering substances coexist. Magnetic beads harboring peptides (peptide beads) showed a higher BPA removal capacity (8.6 mg/g) than that of bare beads without peptides (2.0 mg/g). The BPA adsorption capacity of peptide beads increased with the number of peptides fused onto the beads, where monomeric, dimeric, or trimeric repeats of a BPA-binding peptide were fused to magnetic beads. The BPA-adsorbing beads were regenerated using a methanol-acetic acid mixture, and after six regeneration cycles, the adsorption capacity remained above 87% of its initial capacity. The selective removal of BPA was confirmed in the presence of BPA analogs with high structural similarity (bisphenol F and bisphenol S) or in synthetic wastewater. The present work is a pioneering study that investigates the selective affinity of peptides to remove specific organics with high selectivity from complex environmental matrices.

4.
Front Neurol ; 15: 1376216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606277

RESUMO

Objectives: This study aimed to investigate the efficacy of using a newly formulated magnesium-rich artificial cerebrospinal fluid (MACSF) as an alternative to normal saline (NS) for intraoperative irrigation during aneurysm clipping in improving the prognosis of patients with Aneurysmal subarachnoid hemorrhage (aSAH). Methods: Patients with aSAH who underwent intraoperative irrigation with MACSF or NS during the clipping in the First Affiliated Hospital of Xi 'an Jiaotong University from March 2019 to March 2022 were selected as MACSF group and NS group, respectively. The primary prognostic indicators were the incidence of favorable outcomes (mRS 0-2). The secondary outcome measures included cerebral vasospasm (CVS), mortality, total hospital stay, and intensive care unit (ICU) stay. Safety was evaluated based on the occurrence rates of hypermagnesemia, meningitis, and hydrocephalus. Results: Overall, 34 and 37 patients were enrolled in the MACSF and NS groups, respectively. At 90 days after aSAH onset, the proportion of favorable prognosis in the MACSF group was significantly higher than that in the NS group (p = 0.035). The incidence of CVS within 14 days after surgery was significantly lower in the MACSF group than that in the NS group (p = 0.026). The mortality rate in the MACSF group was significantly lower than in the NS group (p = 0.048). The median lengths of hospital stay (p = 0.008) and ICU stay (p = 0.018) were significantly shorter in the MACSF group than in the NS group. No significant differences were observed in safety measures. Conclusion: Using MACSF as an irrigation fluid for aneurysm clipping can significantly improve the 90-day prognosis of patients with aSAH, which may be related to the reduced incidence of CVS. Clinical trial registration: https://www.clinicaltrials.gov, identifier NCT04358445.

5.
Nanomaterials (Basel) ; 14(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607107

RESUMO

Drug delivery vehicles composed of lipids and gemini surfactants (GS) are promising in gene therapy. Tuning the composition and properties of the delivery vehicle is important for the efficient load and delivery of DNA fragments (genes). In this paper, we studied novel gene delivery systems composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-3-phosphocholine (DPPC), and GS of the type N,N-bis(dimethylalkyl)-α,ω-alkanediammonium dibromide at different ratios. The nanoscale properties of the mixed DOPC-DPPC-GS monolayers on the surface of the gene delivery system were studied using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We demonstrate that lipid-GS mixed monolayers result in the formation of nanoscale domains that vary in size, height, and electrical surface potential. We show that the presence of GS can impart significant changes to the domain topography and electrical surface potential compared to monolayers composed of lipids alone.

6.
Sci Total Environ ; 927: 172254, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583609

RESUMO

Socio-economic activities like food trade can increase the uncertainty of human risk of persistent organic pollutants (POPs). We compared the change in model predicted α-hexachlorocyclohexane (α-HCH) cancer risk (CR) with and without grain trade in mainland China. In scenario without grain logistics, α-HCH moved fast away from southern and southeastern China via northward atmospheric transport. However, the grain logistics from northeastern China delivers the α-HCH previously accumulated in northeastern sink back to densely populated areas in recent years, which enhance CR by >50 % in the southern seaboard of China. The northward movement of grain production center and recent grain deficiency in southern provinces induced by dietary pattern changes is identified as the major driving factors of the reversed transport of α-HCH. The finding highlights the potential of socio-economic activities that can otherwise offset the risk reduction effect of the geochemical cycle of POPs.


Assuntos
Grão Comestível , Hexaclorocicloexano , China , Hexaclorocicloexano/análise , Humanos , Exposição Ambiental/estatística & dados numéricos , Meios de Transporte , Poluentes Ambientais/análise
7.
Comput Methods Programs Biomed ; 250: 108173, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38615386

RESUMO

BACKGROUND AND OBJECTIVE: The conventional valve stents that are cylindrical in shape will become elliptical when implanted in bicuspid aortic valve, thereby reducing the durability of the artificial valve. In this study, a new design of valve stent is presented where valve stents have elliptical cross-section at the annulus and it is expected to have better expandability and circle shape during the interaction between the stent and bicuspid aortic valve, thereby extending the durability of artificial valve. METHODS: Finite element method (FEM) is used to study the mechanical behavior of the novel valve stent in the bicuspid aortic valve. The effects of three matching relationship between the ellipticity of the stents and the ellipticity of the annulus (i.e., the ellipticity of the stent is greater than, equal to and less than the annulus ellipticity, respectively) on the mechanical behavior of stent expansion are studied. In addition, the expansion mechanical behavior of the novel valve stent at different implantation depths is also compared. RESULTS: Results indicate that novel valve stent implantation with elliptical features is superior to conventional circular valve stent. When the novel valve stent ellipticity is less than the annulus ellipticity, the ellipticity of the novel valve stent after implantation is smaller than that of the conventional circular valve stent. This indicated that the novel valve stent has better expandability and post-expansion shape, making artificial valve to have better durability. The risk of paravalvular leak after implantation is lowest when the novel valve stent ellipticity is less than annulus ellipticity. When the novel valve stent ellipticity coincides with annulus ellipticity, the aortic wall is subjected to greatest stress. With the increase of implantation depth, the stress on the novel valve stent decrease. CONCLUSIONS: This study might provide insights for improving stent design for bicuspid aortic valve.

8.
Adv Mater ; : e2400307, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657273

RESUMO

The advancement of mRNA-based immunotherapies for cancer is highly dependent on the effective delivery of RNA payloads using ionizable lipid nanoparticles (LNPs). However, the clinical application of these therapies is hindered by variable mRNA expression among different cancer types and the risk of systemic toxicity. The transient expression profile of mRNA further complicates this issue, necessitating frequent dosing and thus increasing the potential for adverse effects. Addressing these challenges, we utilized a high-throughput combinatorial method to synthesize and screen LNPs that efficiently deliver circular RNA (circRNA) to lung tumors. Our lead LNP, H1L1A1B3, demonstrated a fourfold increase in circRNA transfection efficiency in lung cancer cells over ALC-0315, the industry-standard LNPs, while providing potent immune activation. A single intratumoral injection of H1L1A1B3 LNPs, loaded with circRNA encoding interleukin-12 (IL-12), induced a robust immune response in a Lewis lung carcinoma model, leading to marked tumor regression. Immunological profiling of treated tumors revealed substantial increments in CD45+ leukocytes and enhanced infiltration of CD8+ T cells, underscoring the ability of H1L1A1B3 LNPs to modulate the tumor microenvironment favorably. These results highlight the potential of tailored LNP platforms to advance RNA drug delivery for cancer therapy, broadening the prospects for RNA immunotherapeutics. This article is protected by copyright. All rights reserved.

9.
Sci Rep ; 14(1): 7889, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570541

RESUMO

Nobiletin, a citrus polymethoxy flavonoid with antiapoptotic and antioxidative properties, could safeguard against cisplatin-induced nephrotoxicity and neurotoxicity. Cisplatin, as the pioneer of anti-cancer drug, the severe ototoxicity limits its clinical applications, while the effect of nobiletin on cisplatin-induced ototoxicity has not been identified. The current study investigated the alleviating effect of nobiletin on cisplatin-induced ototoxicity and the underlying mechanisms. Apoptosis and ROS formation were evaluated using the CCK-8 assay, Western blotting, and immunofluorescence, indicating that nobiletin attenuated cisplatin-induced apoptosis and oxidative stress. LC3B and SQSTM1/p62 were determined by Western blotting, qPCR, and immunofluorescence, indicating that nobiletin significantly activated autophagy. Nobiletin promoted the nuclear translocation of NRF2 and the transcription of its target genes, including Hmox1, Nqo1, and ferroptosis markers (Gpx4, Slc7a11, Fth, and Ftl), thereby inhibiting ferroptosis. Furthermore, RNA sequencing analysis verified that autophagy, ferroptosis, and the NRF2 signaling pathway served as crucial points for the protection of nobiletin against ototoxicity caused by cisplatin. Collectively, these results indicated, for the first time, that nobiletin alleviated cisplatin-elicited ototoxicity through suppressing apoptosis and oxidative stress, which were attributed to the activation of autophagy and the inhibition of NRF2/GPX4-mediated ferroptosis. Our study suggested that nobiletin could be a prospective agent for preventing cisplatin-induced hearing loss.


Assuntos
Ferroptose , Flavonas , Ototoxicidade , Humanos , Cisplatino/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ototoxicidade/tratamento farmacológico , Ototoxicidade/etiologia , Estudos Prospectivos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/farmacologia , Autofagia
10.
Am J Transplant ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452932

RESUMO

Mycophenolate mofetil (MMF) is one of the most used immunosuppressive drugs in organ transplantation, but frequent gastrointestinal (GI) side effects through unknown mechanisms limit its clinical use. Gut microbiota and its metabolites were recently reported to play a vital role in MMF-induced GI toxicity, but the specific mechanism of how they interact with the human body is still unclear. Here, we found that secondary bile acids (BAs), as bacterial metabolites, were significantly reduced by MMF administration in the gut of mice. Microbiome data and fecal microbiota transfer model supported a microbiota-dependent effect on the reduction of secondary BAs. Supplementation of the secondary BA lithocholic acid alleviated MMF-induced weight loss, colonic inflammation, and oxidative phosphorylation damage. Genetic deletion of the vitamin D3 receptor (VDR), which serves as a primary colonic BA receptor, in colonic epithelial cells (VDRΔIEC) abolished the therapeutic effect of lithocholic acid on MMF-induced GI toxicity. Impressively, we discovered that paricalcitol, a Food and Drug Administration-approved VDR agonist that has been used in clinics for years, could effectively alleviate MMF-induced GI toxicity. Our study reveals a previously unrecognized mechanism of gut microbiota, BAs, and VDR signaling in MMF-induced GI side effects, offering potential therapeutic strategies for clinics.

11.
Aging (Albany NY) ; 16(5): 4327-4347, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38451188

RESUMO

The 4-Hydroxyphenylpyruvate Dioxygenase-Like (HPDL) protein plays a crucial role in safeguarding cells from oxidative stress by orchestrating metabolic reprogramming. New research suggests that HPDL is considerably increased in pancreatic ductal adenocarcinoma, although its impact on cancer immunotherapy is still unclear. Pancancer transcriptional data were obtained from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression datasets. The cBioPortal webtool was utilized to examine genomic changes in different cancer types. The prognostic significance of HPDL in pancancer was evaluated using univariate Cox regression analysis. Extensive utilization of the CTRP and PRISM databases was performed to forecast potential medications that specifically target HPDL in LUAD. In summary, studies were conducted to evaluate the impact of HPDL on the proliferation and movement of LUAD cells using loss-of-function experiments. HPDL is expressed excessively in a wide variety of cancer types, indicating its prognostic and predictive value. Moreover, we emphasized the strong correlation between HPDL and indicators of immune stimulation, infiltration of immune cells, and expression of immunoregulators. The remarkable finding of the HPDL was its capacity to precisely anticipate responses to cancer therapies using anti-PDL1 and anti-PD1 antibodies among individuals. Moreover, HPDL can function as a predictive marker for specific inhibitors in instances of cancer. Suppression of HPDL resulted in reduced growth and movement of LUAD cells. To summarize, our results suggest that HPDL acts as a prospective predictor of outcomes and a positive indication of response to immunotherapy in patients undergoing treatment with immune checkpoint inhibitors (ICIs).


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Dioxigenases , Neoplasias Pancreáticas , Humanos , 4-Hidroxifenilpiruvato Dioxigenase/genética , Prognóstico , Imunoterapia , Microambiente Tumoral
12.
Zookeys ; 1193: 145-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487668

RESUMO

The genus Svistella Gorochov, 1987 includes 10 species from Asia, with nine documented in China. In this study, a new species, Svistellayayun He, sp. nov., is described from Xizang, China. Morphologically, it resembles S.rufonotata (Chopard, 1932) but can be distinguished by a smaller inner tympanum, dark-brown setae on the 5th segment of the maxillary palp, and a rounded apex on the ectoparamere. To validate our morphological inferences and support the description of S.yayunsp. nov. as a new species, we performed a PCA based on bioacoustics parameters and molecular analysis. All Svistella species documented in China are distinguished by integrating their songs and DNA barcoding.

13.
Ren Fail ; 46(1): 2322688, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38445373

RESUMO

Sepsis-associated acute kidney injury (S-AKI) is a common disease in pediatric intensive care units (ICU) with high morbidity and mortality. The newly discovered results indicate that microRNAs (miRNAs) play an important role in the diagnosis and treatment of S-AKI and can be used as markers for early diagnosis. In this study, the expression level of miR-16-5p was found to be significantly upregulated about 20-fold in S-AKI patients, and it also increased by 1.9 times in the renal tissue of S-AKI mice. Receiver operating characteristic (ROC) curve analysis showed that miR-16-5p had the highest predictive accuracy in the diagnosis of S-AKI (AUC = 0.9188). In vitro, the expression level of miR-16-5p in HK-2 cells treated with 10 µg/mL lipopolysaccharide (LPS) increased by more than 2 times. In addition, LPS-exposed renal tissue and HK-2 cells lead to upregulation of inflammatory cytokines IL-6, IL-1ß, TNF-a, and kidney damage molecules kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL). However, inhibition of miR-16-5p significantly mitigated LPS expose-mediated kidney injury and inflammation. Furthermore, LPS-exposed HK-2 cells increased more than 1.7-fold the expression levels of Bax and caspase-3, decreased 3.2-fold the expression level of B-cell lymphoma-2 (Bcl-2), and significantly promoted the occurrence of apoptosis. MiR-16-5p mimic further increased LPS-induced apoptosis in HK-2 cells. Nevertheless, inhibition of miR-16-5p significantly attenuated this effect. In summary, up-regulation of miR-16-5p expression can significantly aggravate renal injury and apoptosis in S-AKI, which also proves that miR-16-5p can be used as a potential biomarker to promote early identification of S-AKI.


Assuntos
Injúria Renal Aguda , MicroRNAs , Sepse , Criança , Humanos , Animais , Camundongos , Lipopolissacarídeos , Injúria Renal Aguda/genética , Apoptose , Sepse/complicações , Sepse/genética
14.
Poult Sci ; 103(6): 103639, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38547673

RESUMO

Riemerella anatipestifer, belonging to Weeksellaceae family Riemerella, is a bacterium that can infect ducks, geese, and turkeys, causing diseases known as duck infectious serositis, new duck disease, and duck septicemia. We collected diseased materials from ducks on a duck farm in China and then isolated and purified a strain of serotype 1 R. anatipestifer named SX-1. Animal experiments showed that SX-1 is a highly virulent strain with an LD50 value of 101 CFU/mL. The complete genome sequence was obtained. The complete genome sequence of R. anatipestifer SX-1 was 2,112,539 bp; 847 genes were involved in catalytic activity, and 445 genes were related to the cell membrane. The total length of the repetitive sequences was 8746 bp. Four CRISPR loci were predicted in R. anatipestifer strain SX-1, and 4 genomic islands were predicted. Concentration and ultra-high-speed centrifugation were used to extract the outer membrane vesicles of R. anatipestifer SX-1. The OMVs were extracted successfully. Particle size analysis revealed the size and abundance of particles: 147.4 nm, 94.9%; 293.6 nm, 1.1%; 327.2 nm, 1.1%; 397.2 nm, 0.3%; and 371.8 nm, 1.1%. The average size was 173.5 nm. Label-free proteomic technology was used to identify proteins in the outer membrane vesicles. ATCC 11845 served as the reference genome sequence, and 148 proteins were identified using proteomic analysis, which were classified into 5 categories based on their sources. Among them, 24 originated from cytoplasmic proteins, 4 from extracellular secreted proteins, 27 from outer membrane proteins, 10 from periplasmic proteins, and 83 from unknown sources. This study conducted a proteomic analysis of OMVs to provide a theoretical basis for the development of R. anatipestifer OMVs vaccines and adjuvants and lays the foundation for further research on the relationship between the pathogenicity of R. anatipestifer and OMVs.

15.
Front Immunol ; 15: 1340997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495888

RESUMO

Background: Renal ischemia-reperfusion injury (RIRI) is an inevitable complication in the process of kidney transplantation and lacks specific therapy. The study aims to determine the underlying mechanisms of RIRI to uncover a promising target for efficient renoprotection. Method: Four bulk RNA-seq datasets including 495 renal samples of pre- and post-reperfusion were collected from the GEO database. The machine learning algorithms were utilized to ascertain pivotal endoplasmic reticulum stress genes. Then, we incorporated correlation analysis and determined the interaction pathways of these key genes. Considering the heterogeneous nature of bulk-RNA analysis, the single-cell RNA-seq analysis was performed to investigate the mechanisms of key genes at the single-cell level. Besides, 4-PBA was applied to inhibit endoplasmic reticulum stress and hence validate the pathological role of these key genes in RIRI. Finally, three clinical datasets with transcriptomic profiles were used to assess the prognostic role of these key genes in renal allograft outcomes after RIRI. Results: In the bulk-RNA analysis, endoplasmic reticulum stress was identified as the top enriched pathway and three endoplasmic reticulum stress-related genes (PPP1R15A, JUN, and ATF3) were ranked as top performers in both LASSO and Boruta analyses. The three genes were found to significantly interact with kidney injury-related pathways, including apoptosis, inflammatory response, oxidative stress, and pyroptosis. For oxidative stress, these genes were more strongly related to oxidative markers compared with antioxidant markers. In single-cell transcriptome, the three genes were primarily upregulated in endothelium, distal convoluted tubule cells, and collecting duct principal cells among 12 cell types of renal tissues in RIRI. Furthermore, distal convoluted tubule cells and collecting duct principal cells exhibited pro-inflammatory status and the highest pyroptosis levels, suggesting their potential as main effectors of three key genes for mediating RIRI-associated injuries. Importantly, inhibition of these key genes using 4-phenyl butyric acid alleviated functional and histological damage in a mouse RIRI model. Finally, the three genes demonstrated highly prognostic value in predicting graft survival outcomes. Conclusion: The study identified three key endoplasmic reticulum stress-related genes and demonstrated their prognostic value for graft survival, providing references for individualized clinical prevention and treatment of postoperative complications after renal transplantation.


Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Animais , Camundongos , Transplante de Rim/efeitos adversos , Rim , Traumatismo por Reperfusão/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Isquemia , RNA
16.
Vet Microbiol ; 292: 110062, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518631

RESUMO

Exosomes, which are small membrane-enclosed vesicles, are actively released into the extracellular space by a variety of cells. Growing evidence indicates that exosomes derived from virus-infected cells can selectively encapsulate viral proteins, genetic materials, or even entire virions. This enables them to mediate cell-to-cell communication and facilitate virus transmission. Classical swine fever (CSF) is a disease listed by the World Organisation for Animal Health (WOAH) Terrestrial Animal Health Code and must be reported to the organisation. It is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. Recent studies have demonstrated that extracellular vesicles originating from autophagy can facilitate the antibody-resistant spread of classical swine fever virus. However, due to the extreme difficulty in achieving a complete separation from virions, the role of exosomes during CSFV infection and proliferation remains elusive. In this study, we ingeniously chose to perform immunoprecipitation (IP) targeting the CSFV E2 protein, thereby achieving the complete removal of infectious virions. Subsequently, we discovered that the purified exosomes are shown to contain viral genomic RNA and partial viral proteins. Furthermore, exosomes secreted by CSFV-infected cells can evade CSFV-specific neutralizing antibodies, establish subsequent infection, and stimulate innate immune system after uptake by recipient cells. In summary, exosomes play a critical role in CSFV transmission. This is of great significance for in-depth exploration of the characteristics of CSFV and its complex interactions with the host.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Exossomos , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Clássica/genética , Anticorpos Neutralizantes , Proteínas Virais , Imunidade Inata
17.
Chem Asian J ; : e202301152, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469659

RESUMO

Wet-chemical synthesis refers to the bottom-up chemical synthesis in solution, which is among the most popular synthetic approaches towards functional two-dimensional (2D) materials. It offers several advantages, including cost-effectiveness, high yields,, precious control over the production process. As an emerging family of 2D materials, elemental 2D materials (Xenes) have shown great potential in various applications such as electronics, catalysts, biochemistry,, sensing technologies due to their exceptional/exotic properties such as large surface area, tunable band gap,, high carrier mobility. In this review, we provide a comprehensive overview of the current state-of-the-art in wet-chemical synthesis of Xenes including tellurene, bismuthene, antimonene, phosphorene,, arsenene. The current solvent compositions, process parameters utilized in wet-chemical synthesis, their effects on the thickness, stability of the resulting Xenes are also presented. Key factors considered involves ligands, precursors, surfactants, reaction time, temperature. Finally, we highlight recent advances, existing challenges in the current application of wet-chemical synthesis for Xenes production, provide perspectives on future improvement.

18.
Sci Adv ; 10(11): eadk2542, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489364

RESUMO

Stressed cells secret misfolded proteins lacking signaling sequence via an unconventional protein secretion (UcPS) pathway, but how misfolded proteins are targeted selectively in UcPS is unclear. Here, we report that misfolded UcPS clients are subject to modification by a ubiquitin-like protein named ubiquitin-fold modifier 1 (UFM1). Using α-synuclein (α-Syn) as a UcPS model, we show that mutating the UFMylation sites in α-Syn or genetic inhibition of the UFMylation system mitigates α-Syn secretion, whereas overexpression of UFBP1, a component of the endoplasmic reticulum-associated UFMylation ligase complex, augments α-Syn secretion in mammalian cells and in model organisms. UFM1 itself is cosecreted with α-Syn, and the serum UFM1 level correlates with that of α-Syn. Because UFM1 can be directly recognized by ubiquitin specific peptidase 19 (USP19), a previously established UcPS stimulator known to associate with several chaperoning activities, UFMylation might facilitate substrate engagement by USP19, allowing stringent and regulated selection of misfolded proteins for secretion and proteotoxic stress alleviation.


Assuntos
Retículo Endoplasmático , alfa-Sinucleína , Animais , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Transporte Proteico/fisiologia , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo , Endopeptidases/metabolismo
19.
Eur Urol Oncol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38523018

RESUMO

BACKGROUND: Current approaches for diagnosis and monitoring of upper tract urothelial carcinoma (UTUC) are often invasive, costly, and not efficient for early-stage and low-grade tumors. OBJECTIVE: To validate a noninvasive urine-based RNA test for accurate UTUC diagnosis. DESIGN, SETTING, AND PARTICIPANTS: Urine samples were prospectively collected from 61 patients with UTUC and 99 controls without urothelial carcinomas, in five clinical centers between October 2022 and August 2023 prior to any invasive test (cystoscope or ureteroscope) or treatment. All samples were analyzed with a urine-based RNA test composed of eight genes (CA9, CCL18, ERBB2, IGF2, MMP12, PPP1R14D, SGK2, and SWINGN). The test results were presented with a risk score for each participant, which was applied to categorize patients into low- or high-risk groups. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The diagnosis of UTUC was based mainly on preoperative radiological examination criteria and confirmed by postoperative pathological results. The recursive feature elimination and support vector machine algorithms, χ2, and Student t test were used. RESULTS AND LIMITATIONS: The eight-gene urine test accurately detected UTUC patients and controls with an area under the curve (AUC) of 0.901 in a single-center testing cohort (n = 93) and an AUC of 0.926 in a multicenter clinical validation cohort (n = 66). In the merged validation cohort, the eight-gene urine test achieved high sensitivity of 90.16%, specificity of 88.89%, and overall accuracy of 89.38%. Remarkably, excellent performance was achieved in 11 low-grade UTUC patients with accuracy of 100%. However, this study collected the urine of UTUC patients only at a single preoperative time point and did not perform continuous tests during the pathological process of UTUC in the surveillance population. CONCLUSIONS: Our results demonstrated that the eight-gene urine test can differentiate accurately between UTUC and other urological diseases with high sensitivity and specificity. In clinical practice, it may be used for identifying UTUC patients effectively, leading to reduced reliance on ureteroscopy and blind surgery. PATIENT SUMMARY: In this study, we investigated a multiplex RNA urine test for noninvasive upper tract urothelial carcinoma (UTUC) diagnosis before treatment. We found that the risk scores derived from the multiplex RNA urine test differed significantly between UTUC patients and corresponding controls.

20.
Transpl Immunol ; 84: 102021, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38452984

RESUMO

BACKGROUND: Antibody-mediated rejection (ABMR) emerged as a major cause of graft loss in renal transplantation. Needle biopsy is the gold standard for diagnosis of ABMR in renal allografts. Thus, noninvasive diagnosis methods of ABMR with high accuracy are urgently needed to prevent unnecessary biopsies. METHODS: We collected peripheral blood transcriptome data from two independent renal transplantation cohorts with patients with ABMR, stable well-functioning transplants (STA), and T-cell mediated rejection (TCMR). Differentially expressed genes (DEGs) were identified by comparing the ABMR group with the STA group. In addition, functional enrichment analysis and gene set enrichment analysis were performed to seek new key underlying mechanisms in ABMR. Subsequently, we utilized a Boruta algorithm and least absolute shrinkage and selection operator logistic algorithm to establish a diagnostic model which was then evaluated and validated in an independent cohort. RESULTS: According to functional enrichment analysis, autophagy was found to be the primary upregulated biological process in ABMR. Based on algorithms, three autophagy-associated genes, ubiquitin specific peptidase 33 (USP33), Ras homolog mTORC1 binding (RHEB), and ABL proto-oncogene 2 (ABL2), were selected to establish the diagnostic model in the training cohort. This autophagy-related gene model possessed good diagnostic value in distinguishing ABMR from STA blood samples in the training cohort (AUC = 0.907) and in the validation cohort (AUC = 0.972). In addition, this model also showed good discernibility in distinguishing ABMR from TCMR in the training and validation cohorts (AUCs = 0.908 and 0.833). CONCLUSION: We identified and validated an autophagy-associated diagnostic model with high accuracy for renal transplant patients with ABMR. Our study provided a new potential test for the non-invasive diagnosis of ABMR in clinical practice and highlighted the importance of autophagy in ABMR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...